
UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 1

UNIT - III

DEADLOCK

A process in operating system uses resources in the following way.

(i) Requests a resource

(ii) Use the resource

(iii) Releases the resource

A deadlock is a situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource acquired by some

other process.

Consider an example when two trains are coming toward each other on the

same track and there is only one track, none of the trains can move once they are

in front of each other.

A similar situation occurs in operating

systems when there are two or more processes that

hold some resources and wait for resources held

by other(s). For example, in the below diagram,

Process1 is holding Resource1 and waiting for

Rsource2 which is acquired by Process2, and

Process2 is waiting for Resource1.

Examples of Deadlock

1. The system has 2 tape drives. P1 and P2 each hold one tape drive and each

needs another one.

2. Semaphores A and B, initialized to 1, P0, and P1 are

in deadlock as follows:

P0 executes wait(A) and preempts.

P1 executes wait(B).

Now P0 and P1 enter in deadlock.

3. Assume the space is available for allocation of 200K bytes, and the

following sequence of events occurs.

P0 P1

wait(A); wait(B)

wait(B); wait(A)

P0 P1

Request

80KB;

Request

70KB;

Request

60KB;

Request

80KB;

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 2

NECESSARY CONDITIONS FOR DEADLOCK

 Mutual Exclusion

Two or more resources are non-shareable (Only one process can

use at a time)

 Hold and Wait

A process is holding at least one resource and waiting for

resources.

 No Pre-emption

A resource cannot be taken from a process unless the process

releases the resource.

 Circular Wait

A set of processes waiting for each other in circular form.

Resource Allocation Graph

The resource allocation graph is the pictorial representation of the state of a

system. As its name suggests, the resource allocation graph is the complete

information about all the processes which are holding some resources or waiting

for some resources.

It also contains the information about all the instances of all the resources

whether they are available or being used by the processes.

In Resource allocation graph, the process is represented by a Circle while

the Resource is represented by a rectangle.

Vertices are mainly of two types, Resource and Process. Each of them will

be represented by a different shape. Circle represents process while rectangle

represents resource. A resource can have more than one instance. Each instance

will be represented by a dot inside the rectangle.

Edges in RAG are also of two types,

one represents Assignment Edge and other

represents the wait of a process for a

resource ie.Request Edge.

A resource is shown as assigned to a

process if the tail of the arrow is attached to

an instance to the resource and the head is

attached to a process.

A process is shown as waiting for a resource if the tail of an arrow is

attached to the process while the head is pointing towards the resource.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 3

Example

Consider 3 processes P1, P2 and P3 and two

types of resources R1 and R2. The resources are

having 1 instance each.

According to the graph, R1 is being used by

P1, P2 is holding R2 and waiting for R1, P3 is

waiting for R1 as well as R2.

The graph is deadlock free since no cycle is

being formed in the graph.

Using Resource Allocation Graph, it can be easily detected whether system

is in a Deadlock state or not. The rules are

Rule-01: In a Resource Allocation Graph where all the resources are single

instance,

 If a cycle is being formed, then system is in a deadlock state.

 If no cycle is being formed, then system is not in a deadlock state.

Rule-02: In a Resource Allocation Graph where all the resources are NOT single

instance,

 If a cycle is being formed, then system may be in a deadlock state.

 Banker’s Algorithm is applied to confirm whether system is in a deadlock

state or not.

 If no cycle is being formed, then system is not in a deadlock state.

 Presence of a cycle is a necessary but not a sufficient condition for the

occurrence of deadlock.

https://www.gatevidyalay.com/bankers-algorithm-deadlock-avoidance/

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 4

METHODS FOR HANDLING DEADLOCK

There are three ways to handle deadlock

1) Deadlock prevention or avoidance

PREVENTION

The idea is to not let the system into a deadlock state. This system will

make sure that above mentioned four conditions will not arise. These techniques

are very costly so we use this in cases where our priority is making a system

deadlock-free.

One can zoom into each category individually, Prevention is done by

negating one of the four necessary conditions for deadlock.

Eliminate mutual exclusion

It is not possible to dis-satisfy the mutual exclusion because some resources,

such as the tape drive and printer, are inherently non-shareable.

Solve hold and Wait

Allocate all required resources to the process before the start of its execution,

this way hold and wait condition is eliminated but it will lead to low device

utilization. for example, if a process requires a printer at a later time and we have

allocated a printer before the start of its execution printer will remain blocked till

it has completed its execution. The process will make a new request for resources

after releasing the current set of resources. This solution may lead to starvation.

Allow pre-emption

Preempt resources from the process when resources are required by other

high-priority processes.

Circular wait Solution

Each resource will be assigned a numerical number. A process can request

the resources to increase/decrease. order of numbering. For Example, if the P1

process is allocated R5 resources, now next time if P1 asks for R4, R3 lesser than

R5 such a request will not be granted, only a request for resources more than R5

will be granted.

AVOIDANCE

Avoidance is kind of futuristic. By using the strategy of “Avoidance”, we

have to make an assumption. We need to ensure that all information about

resources that the process will need is known to us before the execution of the

process.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 5

Resource Allocation Graph

The resource allocation graph (RAG) is used to visualize the system‟s

current state as a graph. The Graph includes all processes, the resources that are

assigned to them, as well as the resources that each Process requests. Sometimes,

if there are fewer processes, we can quickly spot a deadlock in the system by

looking at the graph rather than the tables we use in Banker‟s algorithm.

Banker’s Algorithm

Bankers‟s Algorithm is a resource allocation and deadlock avoidance

algorithm which test all the request made by processes for resources, it checks

for the safe state, and after granting a request system remains in the safe state it

allows the request, and if there is no safe state it doesn‟t allow the request made

by the process.

In prevention and avoidance, we get the correctness of data but

performance decreases.

2) Deadlock detection and recovery

If Deadlock prevention or avoidance is not applied to the software then we

can handle this by deadlock detection and recovery, which consist of two phases.

In the first phase, we examine the state of the process and check whether

there is a deadlock or not in the system.

If found deadlock in the first phase then we apply the algorithm for

recovery of the deadlock.

3) Deadlock ignorance:

If a deadlock is very rare, then let it happen and reboot the system. This is

the approach that both Windows and UNIX take. We use the ostrich algorithm

for deadlock ignorance.

In Deadlock, ignorance performance is better than the above two methods

but not the correctness of data.

SAFE STATE

A safe state can be defined as a state in which there is no deadlock. It is

achievable if:

 If a process needs an unavailable resource, it may wait until the same has

been released by a process to which it has already been allocated. if such a

sequence does not exist, it is an unsafe state.

 All the requested resources are allocated to the process.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 6

BANKER'S ALGORITHM

It is a banker algorithm used to avoid deadlock and allocate

resources safely to each process in the computer system. The 'S-State' examines

all possible tests or activities before deciding whether the allocation should be

allowed to each process. It also helps the operating system to successfully share

the resources between all the processes.

The banker's algorithm is named because it checks whether a person should

be sanctioned a loan amount or not to help the bank system safely simulate

allocation resources.

Suppose the number of account holders in a particular bank is 'n', and the

total money in a bank is 'T'. If an account holder applies for a loan; first, the bank

subtracts the loan amount from full cash and then estimates the cash difference is

greater than T to approve the loan amount. These steps are taken because if

another person applies for a loan or withdraws some amount from the bank, it

helps the bank manage and operate all things without any restriction in the

functionality of the banking system.

Similarly, it works in an operating system. When a new process is created

in a computer system, the process must provide all types of information to

the operating system like upcoming processes, requests for their resources,

counting them, and delays.

Based on these criteria, the operating system decides which process

sequence should be executed or waited so that no deadlock occurs in a system.

Therefore, it is also known as deadlock avoidance algorithm or deadlock

detection in the operating system.

When working with a banker's algorithm, it requests to know about three

things:

1. How much each process can request for each resource in the system. It is

denoted by the [MAX] request.

2. How much each process is currently holding each resource in a system. It is

denoted by the [ALLOCATED] resource.

3. It represents the number of each resource currently available in the system.

It is denoted by the [AVAILABLE] resource.

https://www.javatpoint.com/operating-system

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 7

Following are the important data structures terms applied in the banker's

algorithm as follows:

Suppose n is the number of processes, and m is the number of each type of

resource used in a computer system.

1. Available: It is an array of length 'm' that defines each type of resource

available in the system. When Available[j] = K, means that 'K' instances of

Resources type R[j] are available in the system.

2. Max: It is a [n x m] matrix that indicates each process P[i] can store the

maximum number of resources R[j] (each type) in a system.

3. Allocation: It is a matrix of m x n orders that indicates the type of

resources currently allocated to each process in the system. When

Allocation [i, j] = K, it means that process P[i] is currently allocated K

instances of Resources type R[j] in the system.

4. Need: It is an M x N matrix sequence representing the number of

remaining resources for each process. When the Need[i] [j] = k, then

process P[i] may require K more instances of resources type Rj to complete

the assigned work.

Need[i][j] = Max[i][j] - Allocation[i][j].

5. Finish: It is the vector of the order m. It includes a Boolean value

(true/false) indicating whether the process has been allocated to the

requested resources, and all resources have been released after finishing its

task.

The Banker's Algorithm is the combination of the safety algorithm and the

resource request algorithm to control the processes and avoid deadlock.

Safety Algorithm

It is a safety algorithm used to check whether or not a system is in a safe

state or follows the safe sequence in a banker's algorithm:

Step1:

There are two vectors Wok and Finish of length m and n in a safety

algorithm.

Initialize: Work = Available

 Finish[i] = false; for I = 0, 1, 2, 3, 4… n - 1.

Step2:

Check the availability status for each type of resources [i], such as:

Need[i] <= Work

Finish[i] == false

If the i does not exist, go to step 4.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 8

Step3:

Work = Work +Allocation(i) // to get new resource allocation

Finish[i] = true

Go to step2 to check the status of resource availability for the next process.

Step4:

If Finish[i] == true; it means that the system is safe for all processes.

Resource Request Algorithm

Let create a resource request array R[i] for each process P[i].

Step1:

When the number of requested resources of each type is less than

the Need resources, go to step2 and if the condition fails, which means that the

process P[i] exceeds its maximum claim for the resource. As the expression

suggests:

If Request(i) <= Need, then go to step2, Else raise an error message.

Step2:

And when the number of requested resources of each type is less than the

available resource for each process, go to step (3). As the expression suggests:

If Request(i) <= Available, then go to step3.

Else Process P[i] must wait for the resource.

Step3:

When the requested resource is allocated to the process by changing state:

Available = Available – Request

Allocation(i) = Allocation(i) + Request (i)

Needi = Needi - Requesti

When the resource allocation state is safe, its resources are allocated to the

process P(i). And if the new state is unsafe, the Process P (i) has to wait for each

type of Request R(i) and restore the old resource-allocation state.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 9

Example:

Consider a system that contains five processes P1, P2, P3, P4, P5 and the

three resource types A, B and C. Following are the resources types: A has 10, B

has 5 and the resource type C has 7 instances.

Process Allocation

A B C

 Max

A B C

 Available

A B C

P1 0 1 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2

P4 2 1 1 2 2 2

P5 0 0 2 4 3 3

Answer the following questions using the banker's algorithm:

1. What is the reference of the need matrix?

2. Determine if the system is safe or not.

3. What will happen if the resource request (1, 0, 2) for process P1 can the

system accept this request immediately?

4. What will happen if the resource request (3, 3, 0) for process P5?

5. What will happen if the resource request (0, 2, 0) for process P1?

Ans.1:

Context of the need matrix is as Need [i] = Max [i] - Allocation [i]

Need for P1: (7, 5, 3) - (0, 1, 0) = 7, 4, 3

Need for P2: (3, 2, 2) - (2, 0, 0) = 1, 2, 2

Need for P3: (9, 0, 2) - (3, 0, 2) = 6, 0, 0

Need for P4: (2, 2, 2) - (2, 1, 1) = 0, 1, 1

Need for P5: (4, 3, 3) - (0, 0, 2) = 4, 3, 1

Process Need

A B C

P1 7 4 3

P2 1 2 2

P3 6 0 0

P4 0 1 1

P5 4 3 1

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 10

Ans.2: Apply the Banker's Algorithm:

Available Resources of A, B and C are 3, 3, and 2.

Now we check if each type of resource request is available for each

process.

Step 1:

For Process P1:

Need <= Available

7, 4, 3 <= 3, 3, 2 condition is false.

So, we examine another process, P2.

Step 2:

For Process P2:

Need <= Available

1, 2, 2 <= 3, 3, 2 condition true

New available = available + Allocation

(3, 3, 2) + (2, 0, 0) => 5, 3, 2

Similarly, we examine another process P3.

Step 3:

For Process P3:

P3 Need <= Available

6, 0, 0 < = 5, 3, 2 condition is false.

Similarly, we examine another process, P4.

Step 4:

For Process P4:

P4 Need <= Available

0, 1, 1 <= 5, 3, 2 condition is true

New Available resource = Available + Allocation

5, 3, 2 + 2, 1, 1 => 7, 4, 3

Similarly, we examine another process P5.

Step 5:

For Process P5:

P5 Need <= Available

4, 3, 1 <= 7, 4, 3 condition is true

New available resource = Available + Allocation

7, 4, 3 + 0, 0, 2 => 7, 4, 5

Now, we again examine each type of resource request for

processes P1 and P3.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 11

Step 6:

For Process P1:

P1 Need <= Available

7, 4, 3 <= 7, 4, 5 condition is true

New Available Resource = Available + Allocation

7, 4, 5 + 0, 1, 0 => 7, 5, 5

So, we examine another process P2.

Step 7:

For Process P3:

P3 Need <= Available

6, 0, 0 <= 7, 5, 5 condition is true

New Available Resource = Available + Allocation

7, 5, 5 + 3, 0, 2 => 10, 5, 7

Hence, we execute the banker's algorithm to find the safe state and the safe

sequence like P2, P4, P5, P1 and P3.

Ans. 3:

For granting the Request (1, 0, 2), first we have to check that

Request <= Available, that is (1, 0, 2) <= (3, 3, 2),

Since the condition is true, the process P2 may

get the request immediately.

Allocation for P2 is (3,0,2) and new Available

is (2, 3, 0)

Context of the need matrix is as follows:

Need [i] = Max [i] - Allocation [i]

Need for P1: (7, 5, 3) - (0, 1, 0) = 7, 4, 3

Need for P2: (3, 2, 2) - (3, 0, 2) = 0, 2, 0

Need for P3: (9, 0, 2) - (3, 0, 2) = 6, 0, 0

Need for P4: (2, 2, 2) - (2, 1, 1) = 0, 1, 1

Need for P5: (4, 3, 3) - (0, 0, 2) = 4, 3, 1

Apply the Banker's Algorithm:

Available Resources of A, B and C are 2, 3, and 0.

Now we check if each type of resource request is available for each

process.

Process Need

A B C

P1 7 4 3

P2 0 2 0

P3 6 0 0

P4 0 1 1

P5 4 3 1

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 12

Step 1:

For Process P1:

Need <= Available

7, 4, 3 <= 2, 3, 0 condition is false.

So, we examine another process, P2.

Step 2:

For Process P2:

Need <= Available

1, 2, 2 <= 2, 3, 0 condition true

New available = available + Allocation

(2, 3, 0) + (3, 0, 2) => 5, 3, 2

Similarly, we examine another process P3.

Step 3:

For Process P3:

P3 Need <= Available

6, 0, 0 < = 5, 3, 2 condition is false.

Similarly, we examine another process, P4.

Step 4:

For Process P4:

P4 Need <= Available

0, 1, 1 <= 5, 3, 2 condition is true

New Available resource = Available + Allocation

5, 3, 2 + 2, 1, 1 => 7, 4, 3

Similarly, we examine another process P5.

Step 5:

For Process P5:

P5 Need <= Available

4, 3, 1 <= 7, 4, 3 condition is true

New available resource = Available + Allocation

7, 4, 3 + 0, 0, 2 => 7, 4, 5

Now, we again examine for processes P1 and P3.

Step 6:

For Process P1:

P1 Need <= Available

7, 4, 3 <= 7, 4, 5 condition is true

New Available Resource = Available + Allocation

7, 4, 5 + 0, 1, 0 => 7, 5, 5

So, we examine another process P2.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 13

Step 7:

For Process P3:

P3 Need <= Available

6, 0, 0 <= 7, 5, 5 condition is true

New Available Resource = Available + Allocation

7, 5, 5 + 3, 0, 2 => 10, 5, 7

Hence, P2 granted immediately and the safe sequence like P2, P4, P5, P1

and P3.

Ans. 4:

For granting the Request (3, 3, 0) by P5, first we have to check that

Request <= Available, that is (3, 3, 0) <= (2, 3, 0),

Since the condition is false. So the request for (3, 3, 0) by process P5

cannot be granted.

Ans. 5:

For granting the Request (0, 2, 0) by P1, first we have to check that

Request <= Available, that is (0, 2, 0) <= (2, 3, 0),

Since the condition is true. So the request for (0, 2, 0) by process P1 may be

granted.

Allocation for P1 is (0, 3, 0)

Context of the need matrix is as follows:

Need [i] = Max [i] - Allocation [i]

Need for P1: (7, 5, 3) - (0, 3, 0) = 7, 2, 3

Apply the Banker's Algorithm:

Available Resources of A, B and C are 2, 1,

and 0.

For Process P1: 7, 2, 3<= 2, 1, 0 condition is false.

For Process P2: 0, 2, 0<= 2, 1, 0 condition is false.

For Process P3: 6, 0, 0<= 2, 1, 0 condition is false.

For Process P4: 0, 1, 1 <= 2, 1, 0 condition is false.

For Process P5: 4, 3, 1 <= 2, 1, 0 condition is false.

Hence, the state is unsafe, P1 cannot be granted immediately.

Process Need

A B

C

P1 7 2 3

P2 0 2 0

P3 6 0 0

P4 0 1 1

P5 4 3 1

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 14

DEADLOCK DETECTION

If a system does not employ either a deadlock prevention or deadlock

avoidance algorithm then a deadlock situation may occur. In this case-

 Apply an algorithm to examine the system‟s state to determine whether

deadlock has occurred.

 Apply an algorithm to recover from the deadlock.

A deadlock detection algorithm is a technique used by an operating system to

identify deadlocks in the system. This algorithm checks the status of processes and

resources to determine whether any deadlock has occurred and takes appropriate

actions to recover from the deadlock.

The algorithm employs several times varying data structures:

Available – A vector of length m indicates the number of available resources

of each type.

Allocation – An n*m matrix defines the number of resources of each type

currently allocated to a process. The column represents resource and rows

represent a process.

Request – An n*m matrix indicates the current request of each process. If

request[i][j] equals k then process Pi is requesting k more instances of resource

type Rj.

The Bankers algorithm includes a Safety Algorithm / Deadlock Detection

Algorithm. The algorithm for finding out whether a system is in a safe state can

be described as follows:

Steps of Algorithm:

1. Let Work and Finish be vectors of length m and n respectively.

Initialize Work= Available. For i=0, 1, …., n-1,

if Requesti = 0, then Finish[i] = true;

otherwise, Finish[i]= false.

2. Find an index i such that both

a) Finish[i] == false

b) Requesti <= Work

If no such i exists go to step 4.

3. Work= Work+ Allocationi

Finish[i]= true

Go to Step 2.

4. If Finish[i]== false for some i, 0<=i<n, then the system is in a deadlocked

state. Moreover, if Finish[i]==false the process Pi is deadlocked.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 15

For example,

1. In this, Work = [0, 0, 0] &

Finish = [false, false, false, false, false]

2. i=0 is selected as both Finish[0] = false and [0, 0, 0]<=[0, 0, 0].

3. Work =[0, 0, 0]+[0, 1, 0] =>[0, 1, 0] &

Finish = [true, false, false, false, false].

4. i=2 is selected as both Finish[2] = false and [0, 0, 0]<=[0, 1, 0].

5. Work =[0, 1, 0]+[3, 0, 3] =>[3, 1, 3] &

Finish = [true, false, true, false, false].

6. i=1 is selected as both Finish[1] = false and [2, 0, 2]<=[3, 1, 3].

7. Work =[3, 1, 3]+[2, 0, 0] =>[5, 1, 3] &

Finish = [true, true, true, false, false].

8. i=3 is selected as both Finish[3] = false and [1, 0, 0]<=[5, 1, 3].

9. Work =[5, 1, 3]+[2, 1, 1] =>[7, 2, 4] &

Finish = [true, true, true, true, false].

10. i=4 is selected as both Finish[4] = false and [0, 0, 2]<=[7, 2, 4].

11. Work =[7, 2, 4]+[0, 0, 2] =>[7, 2, 6] &

Finish = [true, true, true, true, true].

12. Since Finish is a vector of all true it means there is no deadlock in this

example.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 16

There are several algorithms for detecting deadlocks in an operating system,

including:

1. Wait-For Graph:

A graphical representation of the system‟s processes and resources. A directed

edge is created from a process to a resource if the process is waiting for that

resource. A cycle in the graph indicates a deadlock.

2. Banker’s Algorithm:

A resource allocation algorithm that ensures that the system is always in a safe

state, where deadlocks cannot occur.

3. Resource Allocation Graph:

A graphical representation of processes and resources, where a directed edge

from a process to a resource means that the process is currently holding that

resource. Deadlocks can be detected by looking for cycles in the graph.

4. Detection by System Modeling:

A mathematical model of the system is created, and deadlocks can be detected

by finding a state in the model where no process can continue to make progress.

5. Timestamping:

Each process is assigned a timestamp, and the system checks to see if any

process is waiting for a resource that is held by a process with a lower timestamp.

These algorithms are used in different operating systems and systems with

different resource allocation and synchronization requirements. The choice of

algorithm depends on the specific requirements of the system and the trade-offs

between performance, complexity and accuracy.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 17

RECOVERY FROM DEADLOCK

The OS will use various recovery techniques to restore the system if it

encounters any deadlocks. When a Deadlock Detection Algorithm determines that

a deadlock has occurred in the system, the system must recover from that

deadlock.

Approaches to Breaking a Deadlock

(a) Process Termination

To eliminate the deadlock, we can simply kill one or more processes. For this,

we use two methods:

1. Abort all the Deadlocked Processes:

Aborting all the processes will certainly break the deadlock but at a great

expense. The deadlocked processes may have been computed for a long time,

and the result of those partial computations must be discarded and there is a

probability of recalculating them later.

2. Abort one process at a time until the deadlock is eliminated:

Abort one deadlocked process at a time, until the deadlock cycle is

eliminated from the system. Due to this method, there may be considerable

overhead, because, after aborting each process, we have to run a deadlock

detection algorithm to check whether any processes are still deadlocked.

(b) Resource Preemption

To eliminate deadlocks using resource preemption, we preempt some resources

from processes and give those resources to other processes. This method will raise

three issues –

1. Selecting a victim:

We must determine which resources and which processes are to be

preempted and also in order to minimize the cost.

2. Rollback:

We must determine what should be done with the process from which

resources are preempted. One simple idea is total rollback. That means

aborting the process and restarting it.

3. Starvation:

In a system, it may happen that the same process is always picked as a

victim. As a result, that process will never complete its designated task. This

situation is called Starvation and must be avoided. One solution is that a

process must be picked as a victim only a finite number of times.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 18

PROCESS MANAGEMENT AND SYNCHRONIZATION

Process Synchronization is the coordination of execution of multiple

processes in a multi-process system to ensure that they access shared resources in

a controlled and predictable manner. It aims to resolve the problem of race

conditions and other synchronization issues in a concurrent system.

The main objective of process synchronization is to ensure that multiple

processes access shared resources without interfering with each other and to

prevent the possibility of inconsistent data due to concurrent access. To achieve

this, various synchronization techniques such as semaphores, monitors and critical

sections are used.

On the basis of synchronization, processes are categorized as one of the

following two types:

 Independent Process: The execution of one process does not affect the

execution of other processes.

 Cooperative Process: A process that can affect or be affected by other

processes executing in the system.

Process synchronization problem arises in the case of Cooperative

processes also because resources are shared in Cooperative processes.

Race Condition

A race condition is a condition when there are many processes and every

process shares the data with each other and accessing the data concurrently and the

output of execution depends on a particular sequence in which they share the data

and access.

(OR)

When more than one process is executing the same code or accessing the

same memory or any shared variable in that condition there is a possibility that the

output or the value of the shared variable is wrong so for that all the processes

doing the race to say that my output is correct. This condition is known as race

condition.

Several processes access and process the manipulations over the same data

concurrently, then the outcome depends on the particular order in which the access

takes place.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 19

Example:

Let‟s say there are two processes P1 and P2 which share common variable

(shared=10), both processes are present in ready – queue and waiting for its turn to

be execute.

Suppose, Process P1 first come under

execution, initialized as X=10 and increment it

by 1 (ie.X=11), after then when CPU read line

sleep(1), it switches from current process P1 to

process P2 present in ready-queue. The process

P1 goes in waiting state for 1 second.

Now CPU execute the Process P2,

initialized Y=10 and decrement Y by

1(ie.Y=9), after then when CPU read sleep(1),

the current process P2 goes in waiting state and

CPU remains idle for sometime as there is no

process in ready-queue.

After completion of 1 second of process P1 when it comes in ready-queue,

CPU takes the process P1 under execution and execute the remaining line of code

and shared=11.

After completion of 1 second of Process P2, when process P2 comes in

ready-queue, CPU start executing the further remaining line of Process P2 and

shared=9.

Note:

We are assuming the final value of common variable(shared) after

execution of Process P1 and Process P2 is 10 (as Process P1 increment variable by

1 and Process P2 decrement variable by 1 and finally it becomes shared=10). But

we are getting undesired value due to lack of proper synchronization.

Actual meaning of race-condition

 If the order of execution of process (first P1 -> then P2) then we will get the

value of common variable (shared) = 9.

 If the order of execution of process (first P2 -> then P1) then we will get the

final value of common variable (shared) =11.

Basically, Here the (value1 = 9) and (value2=11) are racing , If we execute

these two process in our computer system then sometime we will get 9 and

sometime we will get 10 as final value of common variable(shared). This

phenomenon is called Race-Condition.

Process 1 Process 2

int X = shared int Y = shared

X++ Y--

sleep(1) sleep(1)

shared = X shared = Y

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 20

CRITICAL SECTION PROBLEM

A critical section is a code segment that can be accessed by only one

process at a time. The critical section contains shared variables that need to be

synchronised to maintain the consistency of data variables. So the critical

section problem means designing a way for cooperative processes to access shared

resources without creating data inconsistencies.

In the entry section, the process requests for entry in the Critical Section.

Any solution to the critical section problem must satisfy three requirements:

 Mutual Exclusion: If a process is executing in its critical section, then no

other process is allowed to execute in the critical section.

 Progress: If no process is executing in the critical section and other

processes are waiting outside the critical section, then only those processes

that are not executing in their remainder section can participate in deciding

which will enter in the critical section next, and the selection can‟t be

postponed indefinitely.

 Bounded Waiting: A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has

made a request to enter its critical section and before that request is granted.

PETERSON’S SOLUTION

Peterson‟s Solution is a classical software-based solution to the critical section

problem. In Peterson‟s solution, we have two shared variables:

 boolean flag[i]: Initialized to FALSE, initially no one is interested in

entering the critical section

 int turn: The process whose turn is to enter the critical section.

// code for producer i

do

{

 flag[i] = true;

 turn = j;

 while (flag[j] == true && turn == j);

 critical section

 flag[i] = false;

 reminder section

 }while(TRUE);

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 21

// code for consumer j

do

{

 flag[j] = true;

 turn = i;

 while (flag[i] == true && turn == i);

 critical section

 flag[i] = false;

reminder section

 }while(TRUE);

In the solution, i represents the Producer and j represents the Consumer.

Initially, the flags are false. When a process wants to execute it‟s critical section,

it sets its flag to true and turn into the index of the other process. This means that

the process wants to execute but it will allow the other process to run first. The

process performs busy waiting until the other process has finished it‟s own

critical section. After this, the current process enters its critical section and adds

or removes a random number from the shared buffer. After completing the

critical section, it sets it‟s own flag to false, indicating it does not wish to execute

anymore.

 Peterson’s Solution preserves all three conditions:

 Mutual Exclusion is assured as only one process can access the critical

section at any time.

 Progress is also assured, as a process outside the critical section does not

block other processes from entering the critical section.

 Bounded Waiting is preserved as every process gets a fair chance.

Disadvantages of Peterson’s Solution

 It involves busy waiting.

 It is limited to 2 processes.

 Peterson‟s solution cannot be used in modern CPU architectures.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 22

SEMAPHORES

Semaphore is a Hardware Solution. This Hardware solution is written or

given to critical section problem. The Semaphore is just a normal integer. The

Semaphore cannot be negative. The least value for a Semaphore is zero (0). The

Maximum value of a Semaphore can be anything. The Semaphores usually have

two operations. The two operations have the capability to decide the values of the

semaphores.

The two Semaphore Operations are:

1. Wait ()

2. Signal ()

Wait Semaphore Operation

The Wait operation works on the basis of Semaphore or Mutex Value. If

the Semaphore value is greater than zero, then the Process can enter the Critical

Section Area.

If the Semaphore value is equal to zero then the Process has to wait.

If the process exits the Critical Section, then have to reduce the value of

Semaphore.

Definition of wait()

wait(Semaphore S)

{

 while (S<=0) ; //no operation

 S--;

}

Signal Semaphore Operation

 The most important part is that this Signal Operation or V Function is

executed only when the process comes out of the critical section. The value of

semaphore cannot be incremented before the exit of process from the critical

section.

Definition of signal()

signal(S)

{

 S++;

}

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 23

There are two types of semaphores:

 Binary Semaphores:

They can only be either 0 or 1. They are also known as mutex locks,

as the locks can provide mutual exclusion. All the processes can share the

same mutex semaphore that is initialized to 1. Then, a process has to wait

until the lock becomes 0. Then, the process can make the mutex semaphore

1 and start its critical section. When it completes its critical section, it can

reset the value of the mutex semaphore to 0 and some other process can

enter its critical section.

 Counting Semaphores:

They can have any value and are not restricted over a certain

domain. They can be used to control access to a resource that has a

limitation on the number of simultaneous accesses. The semaphore can be

initialized to the number of instances of the resource. Whenever a process

wants to use that resource, it checks if the number of remaining instances is

more than zero, i.e., the process has an instance available. Then, the process

can enter its critical section thereby decreasing the value of the counting

semaphore by 1. After the process is over with the use of the instance of the

resource, it can leave the critical section thereby adding 1 to the number of

available instances of the resource.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

The following problems of synchronization are considered as classical

problems:

1. Bounded-buffer (or Producer-Consumer) Problem,

2. Dining-Philosophers Problem,

3. Readers and Writers Problem,

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 24

Bounded-buffer (or Producer-Consumer) Problem

Bounded Buffer problem is also called producer consumer problem and it

is one of the classic problems of synchronization. This problem is generalized in

terms of the Producer-Consumer problem. Solution to this problem is, creating

two counting semaphores “full” and “empty” to keep track of the current number

of full and empty buffers respectively. Producers produce a product and

consumers consume the product, but both use of one of the containers each time.

A producer tries to insert data into an empty slot of the buffer. A consumer

tries to remove data from a filled slot in the buffer. There needs to be a way to

make the producer and consumer work in an independent manner.

One solution of this problem is to use semaphores. The semaphores which

will be used here are:

 m, a binary semaphore which is used to acquire and release the lock.

 empty, a counting semaphore whose initial value is the number of

slots in the buffer, since, initially all slots are empty.

 full, a counting semaphore whose initial value is 0.

At any instant, the current value of empty represents the number of empty

slots in the buffer and full represents the number of occupied slots in the buffer.

The Producer Operation

do

{

 wait(empty); // wait until empty > 0 and then decrement 'empty'

 wait(mutex); // acquire lock

 /* perform the insert operation in a slot */

 signal(mutex); // release lock

 signal(full); // increment 'full'

 } while(TRUE);

https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 25

 Looking at the above code for a producer, we can see that a producer first

waits until there is atleast one empty slot.

 Then it decrements the empty semaphore because, there will now be one

less empty slot, since the producer is going to insert data in one of those

slots.

 Then, it acquires lock on the buffer, so that the consumer cannot access the

buffer until producer completes its operation.

 After performing the insert operation, the lock is released and the value

of full is incremented because the producer has just filled a slot in the

buffer.

The Consumer Operation

do

{

 wait(full); // wait until full > 0 and then decrement 'full'

 wait(mutex); // acquire the lock

 /* perform the remove operation in a slot */

 signal(mutex); // release the lock

 signal(empty); // increment 'empty'

 } while(TRUE);

 The consumer waits until there is atleast one full slot in the buffer.

 Then it decrements the full semaphore because the number of occupied

slots will be decreased by one, after the consumer completes its operation.

 After that, the consumer acquires lock on the buffer.

 Following that, the consumer completes the removal operation so that the

data from one of the full slots is removed.

 Then, the consumer releases the lock.

 Finally, the empty semaphore is incremented by 1, because the consumer

has just removed data from an occupied slot, thus making it empty.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 26

Dining-Philosophers Problem

The Dining Philosopher Problem states that K philosophers seated around a

circular table with one chopstick between each pair of philosophers. There is

one chopstick between each philosopher. A philosopher may eat if he can

pickup the two chopsticks adjacent to him. One chopstick may be picked up by

any one of its adjacent followers but not both. This problem involves the

allocation of limited resources to a group of processes in a deadlock-free and

starvation-free manner.

The design of the problem was to illustrate the challenges of avoiding

deadlock, a deadlock state of a system is a state in which no progress of system is

possible. Consider a proposal where each philosopher is instructed to behave as

follows:

 The philosopher is instructed to think till the left fork is available, when

it is available, hold it.

 The philosopher is instructed to think till the right fork is available,

when it is available, hold it.

 The philosopher is instructed to eat when both forks are available.

 then, put the right fork down first

 then, put the left fork down next

 repeat from the beginning.

https://www.geeksforgeeks.org/operating-system-dining-philosopher-problem-using-semaphores/

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 27

The structure of Philosopher i is as follows.

do

 {

 Wait(take_chopstick[i]);

 Wait(take_chopstick[(i+1) % 5]) ;

 …

 EAT

 …

 Signal(put_chopstick[i]);

 Signal(put_chopstick[(i+1) % 5]) ;

 …

 THINK

 } while(TRUE);

In the above code, first wait operation is performed on take_chopstick[i]

and take_chopstick[(i+1) % 5]. This shows philosopher i have picked up the

chopsticks from its left and right. The eating function is performed after that.

On completion of eating by philosopher i the, signal operation is performed on

take_chopstick[i] and take_chopstick[(i+1) % 5]. This shows that the philosopher i

have eaten and put down both the left and right chopsticks. Finally, the

philosopher starts thinking again.

Let value of i = 0(initial value), Suppose Philosopher P0 wants to eat, it will

enter in Philosopher() function, and execute Wait(take_chopstick[i]); by doing

this it holds C0 chopstick and reduces semaphore C0 to 0, after that it

execute Wait(take_chopstick[(i+1) % 5]); by doing this it holds C1 chopstick

(since i =0, therefore (0 + 1) % 5 = 1) and reduces semaphore C1 to 0.

Similarly, suppose now Philosopher P1 wants to eat, it will enter in

Philosopher() function, and execute Wait(take_chopstick[i]); by doing this it

will try to hold C1 chopstick but will not be able to do that, since the value of

semaphore C1 has already been set to 0 by philosopher P0, therefore it will enter

into an infinite loop because of which philosopher P1 will not be able to pick

chopstick C1 whereas if Philosopher P2 wants to eat, it will enter in Philosopher()

function, and execute Wait(take_chopstickC[i]); by doing this it holds C2

chopstick and reduces semaphore C2 to 0, after that, it executes Wait(

take_chopstickC[(i+1) % 5]); by doing this it holds C3 chopstick(since i =2,

therefore (2 + 1) % 5 = 3) and reduces semaphore C3 to 0.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 28

Hence the above code is providing a solution to the dining philosopher

problem, A philosopher can only eat if both immediate left and right chopsticks of

the philosopher are available else philosopher needs to wait. Also at one go two

independent philosophers can eat simultaneously (i.e., philosopher P0 and P2, P1

and P3 & P2 and P4 can eat simultaneously as all are the independent processes

and they are following the above constraint of dining philosopher problem)

The drawback of the above solution of the dining philosopher problem

 No two neighbouring philosophers can eat at the same point in time.

 This solution can lead to a deadlock condition. This situation happens if all

the philosophers pick their left chopstick at the same time, which leads to

the condition of deadlock and none of the philosophers can eat.

To avoid deadlock, some of the solutions are as follows :

 Maximum number of philosophers on the table should not be more than

four, in this case, chopstick C4 will be available for philosopher P3, so P3

will start eating and after the finish of his eating procedure, he will put

down his both the chopstick C3 and C4, i.e. semaphore C3 and C4 will now

be incremented to 1. Now philosopher P2 which was holding chopstick C2

will also have chopstick C3 available, hence similarly, he will put down his

chopstick after eating and enable other philosophers to eat.

 A philosopher at an even position should pick the right chopstick and then

the left chopstick while a philosopher at an odd position should pick the left

chopstick and then the right chopstick.

 Only in case if both the chopsticks (left and right) are available at the

same time, only then a philosopher should be allowed to pick their

chopsticks

 All the four starting philosophers (P0, P1, P2, and P3) should pick the left

chopstick and then the right chopstick, whereas the last philosopher P4

should pick the right chopstick and then the left chopstick. This will force

P4 to hold his right chopstick first since the right chopstick of P4 is C0,

which is already held by philosopher P0 and its value is set to 0, i.e C0 is

already 0, because of which P4 will get trapped into an infinite loop and

chopstick C4 remains vacant. Hence philosopher P3 has both left C3 and

right C4 chopstick available, therefore it will start eating and will put down

its both chopsticks once finishes and let others eat which removes the

problem of deadlock.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 29

Readers and Writers Problem

Suppose that a database is to be shared among several concurrent processes.

Some of these processes may want only to read the database, whereas others may

want to update (that is, to read and write) the database. We distinguish between

these two types of processes by referring to the former as readers and to the latter

as writers. Precisely in OS we call this situation as the readers-writers problem.

Problem parameters:

 One set of data is shared among a number of processes.

 Once a writer is ready, it performs its write. Only one writer may write at a

time.

 If a process is writing, no other process can read it.

 If at least one reader is reading, no other process can write.

 Readers may not write and only read.

There are four types of cases that could happen here.

Case Process 1 Process 2 Allowed/Not Allowed

Case 1 Writing Writing Not Allowed

Case 2 Writing Reading Not Allowed

Case 3 Reading Writing Not Allowed

Case 4 Reading Reading Allowed

Three variables are used: mutex, wrt, readcnt

1. Semaphore mutex is used to ensure mutual exclusion when readcnt is

updated i.e. when any reader enters or exit from the critical section.

2. Semaphore wrt is used by both readers and writers.

3. readcnt tells the number of processes performing read in the critical

section, initially 0 amd it is integer variable.

Functions for semaphore

wait() : decrements the semaphore value.

signal() : increments the semaphore value.

https://www.geeksforgeeks.org/readers-writers-problem-set-1-introduction-and-readers-preference-solution/

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 30

Reader process

 Reader requests the entry to critical section.

 If allowed:

 it increments the count of number of readers inside the critical

section. If this reader is the first reader entering, it locks

the wrt semaphore to restrict the entry of writers if any reader is

inside.

 It then, signals mutex as any other reader is allowed to enter while

others are already reading.

 After performing reading, it exits the critical section. When exiting,

it checks if no more reader is inside, it signals the semaphore “wrt”

as now, writer can enter the critical section.

 If not allowed, it keeps on waiting.

do

{

 wait(mutex); // Reader wants to enter the critical section

 readcnt++; // The number of readers has now increased by 1

 if (readcnt==1) // there is atleast one reader in the critical section

 wait(wrt); // no writer can enter if there is even one reader

 signal(mutex); // other readers can enter where otherer is inside

 ….. perform READING

 wait(mutex); // a reader wants to leave

 readcnt--;

if (readcnt == 0) // no reader is left in the critical section,

 signal(wrt); // writers can enter

 signal(mutex); // reader leaves

} while(true);

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 31

Writer process

1. Writer requests the entry to critical section.

2. If allowed i.e. wait() gives a true value, it enters and performs the

write. If not allowed, it keeps on waiting.

3. It exits the critical section.

do

{

 wait(wrt); // writer requests for critical section

 …perform WRITING

 signal(wrt); // leaves the critical section

} while(true);

Thus, the semaphore „wrt„ is queued on both readers and writers in a

manner such that preference is given to readers if writers are also there. Thus, no

reader is waiting simply because a writer has requested to enter the critical

section.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 32

MONITOR

It is a synchronization technique that enables threads to mutual exclusion

and the wait() for a given condition to become true. It is an abstract data type. It

has a shared variable and a collection of procedures executing on the shared

variable. A process may not directly access the shared data variables, and

procedures are required to allow several processes to access the shared data

variables simultaneously.

At any particular time, only one process may be active in a monitor. Other

processes that require access to the shared variables must queue and are only

granted access after the previous process releases the shared variables.

Syntax:

monitor

{

 //shared variable declarations

 data variables;

 Procedure P1() { ... }

 Procedure P2() { ... }

 .

 .

 .

 Procedure Pn() { ... }

 Initialization Code() { ... }

}

Advantages

 Mutual exclusion is automatic in monitors.

 Monitors are less difficult to implement than semaphores.

 Monitors may overcome the timing errors that occur when semaphores are

used.

 Monitors are a collection of procedures and condition variables that are

combined in a special type of module.

Disadvantages

 Monitors must be implemented into the programming language.

 The compiler should generate code for them.

 It gives the compiler the additional burden of knowing what operating

system features is available for controlling access to crucial sections in

concurrent processes.

UNIT – III CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 33

Comparison between the Semaphore and Monitor

Features Semaphore Monitor

Definition A semaphore is an integer variable

that allows many processes in a

parallel system to manage access to

a common resource like a

multitasking OS.

It is a synchronization process

that enables threads to have

mutual exclusion and the wait()

for a given condition to become

true.

Syntax // Wait Operation

wait(Semaphore S)

{

 while (S<=0);

 S--;

}

// Signal Operation

signal(Semaphore S)

{

 S++;

}

Monitor

{

//shared variable declarations

Procedure P1() { ... }

Procedure P2() { ... }

.

.

.

Procedure Pn() { ... }

Initialization Code() { ... }

}

Basic Integer variable Abstract data type

Access When a process uses shared

resources, it calls the wait() method

on S, and when it releases them, it

uses the signal() method on S.

When a process uses shared

resources in the monitor, it has

to access them via procedures.

Action The semaphore's value shows the

number of shared resources

available in the system.

The Monitor type includes

shared variables as well as a set

of procedures that operate on

them.

Condition

Variable

No condition variables. It has condition variables.

